Compressed LZSS File Format: Difference between revisions
Lou Montana (talk | contribs) m (spaces → tab) |
Lou Montana (talk | contribs) m (Text replacement - ";[ ]+ " to "; ") |
||
Line 211: | Line 211: | ||
*DecompressedPtr++ = ' '; | *DecompressedPtr++ = ' '; | ||
rlen--; | rlen--; | ||
rpos++; | rpos++; | ||
} | } | ||
memcpy(DecompressedPtr, &DeCompressedBuffer[rpos], rlen); | memcpy(DecompressedPtr, &DeCompressedBuffer[rpos], rlen); |
Revision as of 00:53, 8 August 2021
Lev Zimpel (LZ) compression is a form of run length encoding that was first introduced in 1983. Since that time, it has had many variants and 'improvements' and constitutes the base form of many archive file formats such as zip, pkzip, 7Zip, LHarc, gunzip, rar. Each, with (sometimes substantial) variants on the theme.
The most popular variants being:
- LZH
- LZW
- LZSS
BI use an improved version of the original LZ compression known as LZSS: Lempel, Ziv, Storer, and Szymanski Encoding and Decoding
The patent for LZSS can be found Here
Generalised Code (from which bis lzss is based) can be found here
The patent describes the overall methodology, essentially, an improved-way-of-doing-things over the earlier LZ compression, without specific implementations (of which, there can be many).
The essential modifiable ingredients to LZSS are
- The number of bits making up a flag to indicate raw data follows, or, a 'pointer'
- The number of bits in raw data.
- The number of bits in the pointer for relative offset, versus run length.
- The size of the 'sliding window' that constitutes the dictionary for compression.
- The maximum number of characters to match in that dictionary.
- An agreed 'space filler'.
All of which is implementation dependent.
As it applies to BI, they choose to use LZSS:8bit
- FlagBits = 8
- Data = Byte.
- 12bit offset, 4bit run length. (two bytes)
- 4096 byte 'sliding window'.
- 18 character best match.
- 'space filler' = 0x20
For more on specific methods of implementation visit here
General
If the 'bit' in the flag is a 1, it is a raw data byte, otherwise a 2 byte (16bit) 'pointer' follows.
A mixture of 8x raw data bytes and /or 8x pointers follow each flagbyte.
The pointer consists of a 4bit run length, and a 12 bit relative offset.
All / most / some / none of offset points into a previously built part of the output. A 4096 byte sliding window. As each byte is progressively added to the output, the window 'slides'.
The 4k sliding window, is, the dictionary for the compression.
It is quite possible before first 4k of output has been constructed, that the offset will refer to a larger value than that actually built.
An 'agreed' value for this phantom buffer is established. In the case of BI's implementation, it is the space character (0x20).
The format of the 'pointer' is unfortunately AAAA LLLL AAAAAAAA, requiring a bit of shift mask fiddling. Very clearly, as originally implemented, this 'format' came from Big Endian machines such as Motorola, giving a far cleaner value of AAAAAAAA AAAA LLLL
As implemented by BI, there is an additional 4 byte checksum at the end of any compressed block. The checksum is simply an unsigned additive spillover of each byte in the built output.
There are in fact two different structures used by BI in implementing LZSS.
- Input (and output) Size is known
- Only the desired output size is known.
Decompression Code
Unknown Input Length
will return the actual number of input bytes discovered, or -1 on error.
note that the decision on whether the data is compressed in the first place is a little arbitrary
for most (but not all) file formats that use compression. If the resulting output data would be less than 1024 bytes
that data is NOT compressed
You need to check the individual file type biki 'discover' if the 1024 byte limit is there, or some other value
int ExpandUnknownInputLength(const byte *in, byte *OutBuf,long outlen)
{
byte Flag;
byte bits;
long Rpos;
byte rlen;
int Fl=0;
ulong CalculatedChecksum = 0;
ulong ReadChecksum;
int pi = 0;
byte data;
byte *to, *from;
while (outlen > 0)
{
Flag=in[pi++];
for (bits=0;bits<8;bits++,Flag>>=1)// up to 8 bytes of data or 8 pointers or
{
if (Flag&0x01) // raw data
{
data = in[pi++];
CalculatedChecksum += data;
OutBuf[Fl++] = data;
if (!--outlen) goto finish;
continue;
}
Rpos = in[pi++];
rlen = (in[pi] & 0x0F) + 3;
Rpos += ((in[pi++]&0xF0) << 4);
while (Rpos > Fl) // special case space fill
{
CalculatedChecksum += 0x20;
OutBuf[Fl++] = 0x20;
if (!--outlen) goto finish;
if (!--rlen) goto stop;
}
Rpos = Fl-Rpos;
from = &OutBuf[Rpos];
to = &OutBuf[Fl];
Fl += rlen;
while (rlen--)
{
data = *from++;
CalculatedChecksum += data;
*to ++= data;
if (!--outlen) goto finish;
}
stop: ;
}
}
goto ok;
finish:
if (Flag&0xFE) return -1; // EXCESS_1BITS;
ok:
memcpy(&ReadChecksum, &in[pi], sizeof(ReadChecksum));
if (ReadChecksum == CalculatedChecksum) return pi + 4;
return -1;
}
ExpandPbo
input length is always known, making code a little less tedious
known input length currently applies only to pbo's.
note further, that unlike unknown input length compression, the decision to compress or not is ENTIRELY arbitrary.
it is at the whim of the pbo creator, which file types, rather than what size, is compressed.
bool unpack_data(const byte *CompressedBuffer, int PackedSize, byte *DeCompressedBuffer,int DecompressedBufferSize)
{
const byte *CompressedPtr;
byte *DecompressedPtr;
size_t offset;
int tmp, count;
unsigned ReadChecksum, CalculatedChecksum;
int rpos, rlen;
int chunk, size;
uchar FlagByte;
byte b1, b2;
if ((PackedSize -= 4) <= 0) return false; // no room for checksum
size = 0;
DecompressedPtr = DeCompressedBuffer;
/*
* Each data block is preceded by a byte telling us what to do with
* the next 8 bytes.
*/
for (offset = 0; offset < PackedSize; )
{
FlagByte = CompressedBuffer[offset++];// grab the encoding byte
for (count = tmp = 1; tmp < 256 && offset < PackedSize ; tmp *= 2, count++)
{
CompressedPtr = &CompressedBuffer[offset];
size = DecompressedPtr - DeCompressedBuffer;
if (FlagByte & tmp) // Append the byte to output
{
*DecompressedPtr++ = *CompressedPtr;
offset++;
}
else
{
// Read a pointer
b1 = *CompressedPtr;
b2 = *(CompressedPtr + 1);
offset += 2;
rpos = size - b1 - 256 * ( b2/16 );
rlen = b2 - 16 * (b2 / 16) + 3;
if ((rpos + rlen) < 0)
{
size += rlen;
while (rlen--) *DecompressedPtr++ = ' ';
}
else
if ((DeCompressedBuffer + rpos) > DecompressedPtr) return false; // PBO_STS_OUT_OF_BOUNDS;
// PAD the file with a block from another place in the file
else
if ((rpos + rlen) <= size)
{
while (rpos < 0)
{
*DecompressedPtr++ = ' ';
rlen--;
rpos++;
}
memcpy(DecompressedPtr, &DeCompressedBuffer[rpos], rlen);
DecompressedPtr += rlen;
size += rlen;
}
// PAD the file with the block until size is rpos + rlen
else
if ((rpos + rlen) > size)
{
chunk = size - rpos;
while (rlen > 0)
{
if (chunk > rlen) chunk = rlen;
if (!chunk) return false; // PBO_STS_CHUNK_ZERO;
memcpy(DecompressedPtr, &DeCompressedBuffer[rpos], chunk);
DecompressedPtr += chunk;
size += chunk;
rlen -= chunk;
}
}
}
} // while temp
} // while offset
// Last 4 bytes of the packed data is the checksum, unsigned int
memcpy(&ReadChecksum, &CompressedBuffer[PackedSize], sizeof(ReadChecksum));
for (CalculatedChecksum = 0,DecompressedPtr = DeCompressedBuffer; DecompressedPtr < &DeCompressedBuffer[DecompressedBufferSize];) CalculatedChecksum+= *DecompressedPtr++;
if (ReadChecksum != CalculatedChecksum) return false; // PBO_STS_CHECKSUM;
return true; // PBO_STS_NO_ERROR;
}
temporary placeholder for example code for odolv7 Lempel-Ziv compression
Note1.
Regardless of method, 4 extra bytes representing the checksum exist at end of the data count.
Note2. The compression code is identical to that employed by pbo packed structures. However, unlike pbo's, the size of the compressed data is unknown, only it is ultimate length. The code below fudges it.
pascal code
function LZBlockRead(var F:file; var outdata:array of byte;szout:integer):byte;
var
k, r, pr, pi,po,i,j:integer;
flags:word;
buf:array[0..$100e] of byte;
c:byte;
crc:integer;
begin
po:=0;
pi:=0;
flags:=0;
r:=0;
for k := 0 to $100F-1 do buf[k] := $20;
while (po < szout) do
begin
flags:= flags shr 1;
if ((flags and $100)= 0) then
begin
BlockRead(F,c,1); // direct reading from file
inc(pi);
flags := c or $ff00;
end;
if (flags and 1)=1 then
begin
if (po >= szout)then break;
BlockRead(F,c,1); // direct reading from file
inc(pi);
outdata[po] := c;
inc(po);
buf[r] := c;
inc(r);
r :=r and $fff;
end
else
begin
i:=0;
BlockRead(F,i,1); // direct reading from file
inc(pi);
j:=0;
BlockRead(F,j,1); // direct reading from file
inc(pi);
i :=i or ((j and $f0) shl 4);
j := (j and $0f) + 2;
pr := r;
for k := 0 to j do
begin
c := buf[(pr - i + k) and $fff];
if (po >= szout) then break;
outdata[po]:= c;
inc(po);
buf[r]:= c;
inc(r);
r :=r and $fff;
end;
end;
end;
BlockRead(F,crc,4); // 4 byte checksum.
result:= pi;
end;
C code
int Decode(unsigned char *in,unsigned char *out,int szin,int szout)
{
szin = szin > 0? szin: 0x7fffffff;
int i, j, k, r = 0, pr, pi = 0,po = 0;
unsigned int flags = 0;
unsigned char buf[0x100F], c;
for (i = 0; i < 0x100F; buf[i] = 0x20, i++);
while (pi < szin && po < szout)
{
if (((flags >>= 1) & 256) == 0)
{
if(pi >= szin)break;
c = in[pi++];
flags = c | 0xff00;
}
if (flags & 1)
{
if(pi >= szin || po >= szout)break;
c = in[pi++];
out[po++] = c;
buf[r++] = c;
r &= 0xfff;
} else
{
if(pi + 1 >= szin)break;
i = in[pi++];
j = in[pi++];
i |= (j & 0xf0) << 4;
j = (j & 0x0f) + 2;
pr = r;
for (k = 0; k <= j; k++)
{
c = buf[(pr - i + k) & 0xfff];
if(po >= szout)break;
out[po++] = c;
buf[r++] = c;
r &= 0xfff;
}
}
}
return pi;// next 4 bytes = checksum
}
/////// parked lzss example code from odolv4x
LZSS
public bool Expand(int ExpectedSize)
{
byte PacketFlagsByte; //packet flags
byte WIPByte;
BitVector32 BV;
msLZ = new MemoryStream(ExpectedSize);
BinaryWriter bwLZ = new BinaryWriter(msLZ);
byte[] Buffer = new byte[ExpectedSize + 15];
bool[] BitFlags = new bool[8];
int i = 0, PointerRef = 0, ndx = 0, CalculatedCRC = 0, ReadCRC = 0, rPos, rLen, CurrentPointerRef = 0, Count = 0;
int Bit0 = BitVector32.CreateMask();
int Bit1 = BitVector32.CreateMask(Bit0);
int Bit2 = BitVector32.CreateMask(Bit1);
int Bit3 = BitVector32.CreateMask(Bit2);
int Bit4 = BitVector32.CreateMask(Bit3);
int Bit5 = BitVector32.CreateMask(Bit4);
int Bit6 = BitVector32.CreateMask(Bit5);
int Bit7 = BitVector32.CreateMask(Bit6);
PacketFlagsByte = br.ReadByte();
do
{
BV = new BitVector32(PacketFlagsByte);
BitFlags[0] = BV[Bit0];
BitFlags[1] = BV[Bit1];
BitFlags[2] = BV[Bit2];
BitFlags[3] = BV[Bit3];
BitFlags[4] = BV[Bit4];
BitFlags[5] = BV[Bit5];
BitFlags[6] = BV[Bit6];
BitFlags[7] = BV[Bit7];
i = 0;
do
{
if ((int)bwLZ.BaseStream.Position >= ExpectedSize) { break; }
if (BitFlags[i++]) //Direct Output
{
WIPByte = br.ReadByte();
bwLZ.Write(WIPByte);
Buffer[PointerRef++] = WIPByte;
CalculatedCRC += WIPByte;
}
else //Get from previous 4k
{
rPos = (int)(br.ReadByte());
rLen = (int)(br.ReadByte());
rPos |= (rLen & 0xF0) << 4;
rLen = (rLen & 0x0F) + 2;
CurrentPointerRef = PointerRef;
if ((CurrentPointerRef - (rPos + rLen)) > 0)
{
//Case of wholly within the buffer, partially within the end of the buffer or wholly outside the end of the buffer
for (Count = 0; Count <= rLen; Count++)
{
ndx = (CurrentPointerRef - rPos) + Count;
if (ndx < 0)
{
//Beyond the start of the buffer
WIPByte = 0x20;
}
else
{
//Within the buffer
WIPByte = Buffer[ndx];
}
//}
bwLZ.Write(WIPByte);
Buffer[PointerRef++] = WIPByte;
CalculatedCRC += WIPByte;
}
}
else
{
//Case of wholly or partially beyond the start of the buffer.
for (Count = 0; Count <= rLen; Count++)
{
ndx = (CurrentPointerRef - rPos) + Count;
if (ndx < 0)
{
//Beyond the start of the buffer
WIPByte = 0x20;
}
else
{
//Within the buffer
WIPByte = Buffer[ndx];
}
bwLZ.Write(WIPByte);
Buffer[PointerRef++] = WIPByte;
CalculatedCRC += WIPByte;
}
}
}
}
while ((i < 8) & (bwLZ.BaseStream.Position < ExpectedSize));
if (bwLZ.BaseStream.Position < ExpectedSize) { PacketFlagsByte = br.ReadByte(); }
}
while (bwLZ.BaseStream.Position < ExpectedSize);
ReadCRC = br.ReadInt32();
return (ReadCRC == CalculatedCRC);
}