log: Difference between revisions

From Bohemia Interactive Community
Jump to navigation Jump to search
m (Text replacement - "_{10,} " to "")
m (Text replacement - " *\| *([Cc]omments|COMMENTS|Game|[Gg]ame [Nn]ame|Game [Vv]ersion|Game Version \(number surrounded by NO SPACES\)|Multiplayer Arguments( \("local" or "global"\))?|Effects|Multiplayer Effects( \("local" or "global"\))?|Multiplayer Exe...)
Line 1: Line 1:
{{Command|Comments=
{{Command


| ofp |Game name=
| ofp


|1.00|Game version=
|1.00


|gr1= Math|GROUP1=
|gr1= Math


| Base-10 logarithm of x. |DESCRIPTION=
| Base-10 logarithm of x.


| [[Number]] <nowiki>=</nowiki> '''log''' x |SYNTAX=
| [[Number]] <nowiki>=</nowiki> '''log''' x


|p1= x: [[Number]]
|p1= x: [[Number]]


| [[Number]] |RETURNVALUE=
| [[Number]]
   
   
|x1= <code>_log = [[log]] 10; // 1</code> |EXAMPLE1=
|x1= <code>_log = [[log]] 10; // 1</code>


| [[Math Commands]], [http://en.wikipedia.org/wiki/Logarithm Logarithm] |SEEALSO=
| [[Math Commands]], [http://en.wikipedia.org/wiki/Logarithm Logarithm]


}}
}}

Revision as of 01:01, 18 January 2021

Hover & click on the images for description

Description

Description:
Base-10 logarithm of x.
Groups:
Math

Syntax

Syntax:
Number = log x
Parameters:
x: Number
Return Value:
Number

Examples

Example 1:
_log = log 10; // 1

Additional Information

See also:
Math CommandsLogarithm

Notes

Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note

Notes

Posted on 23:14, 16 Jun 2014
ffur2007slx2_5
(A3 1.20) To clarify: y = 10 ^ x // x = log y People use logarithm at the purpose of simplifying multiplication via exponents plus years before. 23456*45634 = 1.07039e+009 log 23456 = 4.37025; log 45634 = 4.65929; (log 23456) + (log 45634) = 9.02954 10^((log 23456) + (log 45634)) = 10 ^ 9.02954 // same as 23456*45634 As modern usage, for instance, to evaluate another exponent when multiple is known (Which magnitude is 4 times stronger than 8.3 earthquake?): //_Unknown = log x; 8.3 = log y // x = 10 ^_Unknown; y = 10 ^8.3 //x/y = (10 ^_Unknown)/(10 ^8.3) = log 4 // x/y = _Unknown – 8.3 = 0.6 //_result = 8.9 magnitude _result = (log 4) + 8.3

Bottom Section