P3D File Format - ODOLV4x

From Bohemia Interactive Community
Revision as of 01:04, 14 May 2010 by Mikero (talk | contribs) (moved named selections to sep page)
Jump to navigation Jump to search

Template:unsupported-doc

Introduction

Acknowledgements

This body of work is due to Synide's sweat and tears. To whom, all honour and glory. Ably assisted by T_D and Mikero that further detailed the data and gave this article a more general and correct structure.

General

The general format of an ArmA ODOLV4x p3d model is similar to the ODOLV7 format. The major differences are that ArmA models have

  • an optional model.cfg, and
  • Lods occur in the file from highest to lowest LodType value.

Legend

see Generic FileFormat Data Types

File Paths

The PrefixRoot\ folder.

Life for modellers would be far less tedious if filenames could also be relative to the p3d they are encountered in. Altering or moving or renaming the pbo (and specifically it's prefix) would not alter the relative location of the paa's it contains.

BI choose to use hard-wired Pbo-Prefix-addressing ONLY.

All hardwired addressing is relative to a built-in-situ (ie virtual) PrefixRoot\ folder

Each and every pbo in Arma contains a unique identity name, a prefix. Irrespective of the name of the pbo, the prefixname is THE name of the pbo from the perspective of the engine. In most cases, the prefixname is, conveniently, the filename. One huge advantage of this mechanism, sorely sorely missed in OFP. is that self-documenting increasing revisions of an addonV123.pbo can be supplied to Arma, with no changes to the mission sqms and other pbos that refer to it.

The PrefixRoot\ folder contains the prefix names of all pbos encountered (almost) ANYWHERE.

Thus the pbos in the Official Addons folder, the Oem Mods\Addons folder(s), the Dta core and bin pbo's, are all examined for their unique prefix names. These prefix names become the dictionary index of where the pbo really is, AND, what filename it actually is.

Thus all filename references in a p3d, *unconditionally* contain a prefixname\someFile\SomeWhere.

In most cases they refer to the very same pbo as the containing p3d and a great pity that the extraneous information could not have been removed by (optional) relative addressing as it requires a great deal of fiddling about when modifying models.

Note also that there is some inconsistency in filename paths. Most do not have a leading \. Some, require it. Both are indeed \hardwired

An Example:

P3dProxyName ="\ca\a10\agm65";

The immediate (and unfortunate) impression is that there is an A10 folder inside the official CA.pbo addon. In fact, the prefix of the A10.pbo = "ca\A10". Thus this reference is to the A10.pbo within which, is a agm65.p3d in it's root folder. (and again, this reference is in fact an extraneous reference to itself since the referring p3d (A10.p3d) is in the same pbo)

Versions

This Document covers ODOL versions:

V40

  • Original Arma1 binarised p3d

V43

• ModelInfo now has a 24 byte thermal profile appended, making it same as vbs2.

• An extra byte at end of Skeleton structure: always 0

  • LZSS compression is still used at this level

V47

As per V43 plus:

• all compressed blocks are LZO compressed

• CompressedMinMax block is now nMinMax*8 in size

• CompressedNormals block is now nNormals*4 in size

  • LodKeyFrame has 4 extra floats

• UVSet structure changed to:

LodUV
{
 float  uvScaling[4];
 ulong  nVertices;
 tbool  DefaultFill;
 if (DefaultFill)
  float                        UV;              // default fill for all nVertices
 else
  float                        UV[nVertices];   // potentially compressed
}


V48

As per V47 plus:

• ModelInfo has a 4 byte appendix



File Format

ODOLv4x
{
 StandardP3DHeader Header;
 ModelInfo         ModelInfo;
 Animations        Animations;
 ulong             StartAdressOfLods[Header.NoOfLods];// offset relative to start of file.
 ulong             EndAdressOfLods  [Header.NoOfLods];
 tbool             LODFaceIndicator [Header.NoOfLods];
 LodFace           LodFaces[NoOfFalseLODFaceIndicators];//there are only as many LodFaces as there are false LODFaceIndicators
 ODOLv40Lod        ODOLv40Lods[Header.NoOfLods];  
 }//EndOfFile


Structures

StandardP3DHeader

StandardP3DHeader { char[4] Filetype; // "ODOL" ulong Version; // 40 ulong NoOfLods; // alias NoOfResolutions; }

common header structure for all P3D file formats

Model Info

see P3D Model Info

Animations

Animations
{
 tbool             AnimsExist;
 if (AnimsExist)
 {
  ulong            nAnimationClasses; // eg NoOfAnimSelections;
  AnimationClass   AnimationClasses[nAnimationClasses];

  ulong            NoOfResolutions;// same value as Header.NoOfLods
  Bones2Anims      Bones2Anims[NoOfResolutions];
  Anims2Bones      Anims2Bones[NoOfResolutions];
  //For every bone there is a list of Animations for each resolution
  //And, a reversed table of every Animation gets a Bone.
  //The reversed table optionally appends axis info dependent on the AnimTransformType
 }
}

AnimationClass

AnimationClass { ulong AnimTransformType; asciiz AnimClassName; // "RightDoor" asciiz AnimSource; // "rotor" float MinMaxValue[2]; float MinMaxPhase[2]; ulong sourceAddress; switch(AnimTransformType) case 0://rotaton case 1://rotationX case 2://rotationY case 3://rotationZ float angle[2]; break; case 4://translation case 5://translationX case 6://translationY case 7://translationZ float offset[2]; break; case 8: //"direct" float axisPos[3]; float axisDir[3]; float angle; //in radians whereas the model.cfg entry is in degrees float axisOffset; break; case 9: //"hide" float hideValue; break; }

corresponds to model.cfg
class CfgModels
{
 ....

 class whateverModel: Default
 {
  ...
  class Animations
  {
   class RightDoor //AnimClassName
   {
     type = "translation";//AnimTransformType
     source = "rotor";    //AnimSource
     etc



Bones2Anims

Bones2Anims
{
 ulong        NoOfBones;
 Bone2AnimClassList   Bone2AnimClassLists[NoOfBones];
}

Bone2AnimClassList

Bone2AnimClassList
{
 ulong NoOfAnimClasses;
 ulong AnimationClassIndex[NoOfAnimClasses]; // a (sometimes repeating) list of zero based indexes into above animation classes
}

Anims2Bones

Anims2Bones
{
 AnimBones AnimBones[Animations.nAnimationClasses];
}

AnimBones

every lod contains an identical list of animation entries that declare the position and axis of the each animation classes

AnimBones
{
 long SkeletonBoneNameIndex; // zero based index to the SkeletonBoneName name & parentname
 // equivalent to selection = "LeftDoor"; eg in the model.cfg
 /*
 ** SkeletonBoneNameIndex== -1 when no skeleton bone is for this Anim and (obviously?) no axis information follows.
 */
 if (SkeletonBoneNameIndex!= -1) && (AnimationClass.AnimTransformType != 8 || 9)
 {
 /*
 ** AnimationClass.AnimTransformType 8 (direct) and 9 (hide) never require axis information. 
 ** This because the "direct" (type 8) already has axis info in it's AnimationClass structure, 
 ** and "hidden" (type 9) clearly doesn't need it.
 */
    XYZTriplet axisPos; //describes the position of the axis used for this anim
    XYZTriplet axisDir;
 }
}

LodFace

//only when the LODFaceIndicator for that lod is false

LodFace     
{
  ulong   HeaderFaceCount;
  bytes   Unknown[13];
}

ODOLv40Lod

 ODOLv40Lod
 {
   ulong                         nProxies;
   LodModelProxy                 LodModelProxies[nProxies];
   ulong                         nLodItems;
   ulong                         LodItems[nLodItems];        // potentially compressed
   ulong                         nUsedBones;
   LodUsedBone                   LodUsedBones[nUsedBones];
   LodPointProperties[...];                                  // Potentially compressed

   byte                          UnknownBytes[8];
   float                         UnknownFloats[10];
 
   ulong                         NoOfTextures;
   asciiz                        LodPaaTextureNames[NoOfTextures];  //"ca\characters\hhl\hhl_01_co.paa"
   ulong                         NoOfMaterials;
   LodMaterial                   LodMaterials[NoOfMaterials];
   LodEdge                       LodEdge1;                   // potentially compressed
   LodEdge                       LodEdge2;                   // potentially compressed
   LodPolygons[...];
   ulong                         nSections;
   LodSection                    LodSections[nSections];
   ulong                         nNamedSelections;
   LodNamedSelection             LodNamedSelections[nNamedSelections]; // potentially compressed
   ulong                         nTokens;
   LodTokenPair                  LodTokenPairs[nTokens];
   ulong                         nFrames;
   LodKeyFrame                   LodKeyFrames[nFrames];

   byte                          Unknown[17];
 if (V40 or V43)
  {
   LodUV                         LodUV1;                     // Potentially compressed
   ulong                         nUVs;
   if (nUVs==2)
    LodUV                        LodUV2;                     // Potentially compressed
   ulong                         NoOfVertices;
   XYZTriplet                    LodXZY[NoOfVertices];       // Potentially compressed
   ulong                         nNormals;
   LodNormals                    LodNormals[nNormals];       // Potentially compressed
   ulong                         nMinMax;
   XYZTriplet                    LodMinMaxXYZ[nMinMax][2];   // Potentially compressed
  }else // V47 & V48
  {
   A2LodUV                       A2LodUV1;                     // Potentially compressed
   ulong                         nUVs;
   if (nUVs==2)
   {
    float                        A2Floats[4];
    A2LodUV                      A2LodUV2;                     // Potentially compressed
   }
   ulong                         NoOfVertices;
   XYZTriplet                    LodXZY[NoOfVertices];       // Potentially compressed, same as arma1
   ulong                         nNormals;
   A2LodNormals                  A2LodNormals[nNormals];       // Potentially compressed
   ulong                         nMinMax;
   float                         LodMinMaxXYZ[nMinMax][2];   // Potentially compressed
  }
      // Note that nUV1's== nNormals == NoOfVertices

   ulong                         Count;
   LodUnknownStruct              UnknownLodStruct[Count];    // Potentially compressed
   ulong                         nBytes;
   byte                          UnknownBytes[nBytes][32];   // Potentially compressed
 }

LodModelProxy

 LodModelProxy
 {
   asciiz      P3dProxyName;        //"\ca\a10\agm65" (.p3d is implied) <<note the leading filename backslash
   XYZTriplet  RotationMatrix[3];
   XYZTriplet  Translation;
   ulong       FaceIndex;
   ulong       NamedSelectionIndex;
   ulong       Unknown[2];
 }

This structure is (almost) identical to ODOL7 except it has 4 indices rather than 2.

LodUsedBone

LodUsedBone
{
  ulong nIDs;         //range 0..3
  ulong BoneID[nIDs];
}

This struct seems to assign unique iterative IDs (starting from zero) to some bones or their anims. Quite weird way of doing that, so it is probably not the whole truth.

LodPointProperties

This table is the equivalent of Oxygen's points->properties dialog box

it specifically stores the user values and other flags for that point

See P3D Point and Face Flags


LodPointProperties
{
 ulong  NoOfPts;
 tbool  UseDefault;
 if (UseDefault)
  ulong DefaultValue;
 else // =0
  ulong PropertyValues[NoOfPts]; // potentially compressed
}

PropertyValues for NoOfPts are either all the same (UseDefault), or, they are individually declared.

On the other hand, and similar to CompressedStructs of OdolV7, if the amount of data in the array exceeds 1023 bytes, that array is compressed.

The use of a) potential compression and b) a default fill, is endemic to many ODOLV40 type packets.

LodMaterial

   //Basically... A direct replication of the information in the given .rvmat file
 LodMaterial
 {
   asciiz            RvMatName;     // "ca\characters\data\soldier_captive_hhl.rvmat"
   ulong             Type;          // 9 == Arma, 10==VBS2
   D3DCOLORVALUE     Emissive;
   D3DCOLORVALUE     Ambient;
   D3DCOLORVALUE     Diffuse;
   D3DCOLORVALUE     forcedDiffuse;
   D3DCOLORVALUE     Specular;
   D3DCOLORVALUE     Unknown;       //Usually same as Specular
   float             SpecularPower;
   ulong             PixelShaderId; //See enumPixelShaderId
   ulong             VertexShaderId;//See enumVertexShaderId
   ulong             BoolFlag;      //mostly 1 otherwise 0
   ulong             AnIndex;       //0,1 or 2
   asciiz            BiSurfaceName; // "ca\data\Penetration\plastic.bisurf"
   ulong             Always0x01;
   ulong             aCount;        //Generally 0
   ulong             nTextures;
   ulong             nTransforms;   // always same as nTextures
   LodStageTexture   StageTextures  [nTextures];
   LodStageTransform StageTransforms[nTransforms]; 
 }  
There is always one default Texture and Transform as the first entry.
It is the only entry if a SurfaceName exists.
D3DCOLORVALUE
D3DCOLORVALUE
{
  float r,g,b,a;
}
LodStageTexture
LodStageTexture
{
 ulong  TextureFilter; // see below
 asciiz PaaTexture;    // "ca\characters\data\civil_tvreport_body_as.paa
                       // alternatively "#(argb,8,8,3)color(0,0,0,1,CO)" (eg)
 ulong  StageID;       // zero based, see below
};
The StageID is iterative (linear sequential). 1st entry is 0, 2nd 1, 3rd 2, etc.
TextureFilter maybe 1 of the following values.
  • 0: Point // sometimes
  • 1: Linear // rarely
  • 2: TriLinear // not seen
  • 3: Anisotropic (default)
LodStageTransform
  LodStageTransform
  {
   ulong UVSource;
   float Transform[4][3];//a DirectX texture space transform matrix
  };

LodEdge

LodEdge
{
 ulong   nEdges;
 ushort  Edges[nEdges]; // potentially compressed
};

LodPolygons

LodPolygons
{
 ulong   NoOfPolygons;
 ulong   OffsetToSectionsStruct;       // see below
 ushort  AlwaysZero;
 PolygonVertice
 {
   byte   NoOfVertices;                // 3 or 4
   ushort VerticesIndex[NoOfVertices]; // 0-based index into Vertices Arrays
 }PolygonVertices[NoOfPolygons];
}

Note that there are always 3, or 4, vertices.

  • 3 point vertices describe a triangle.
  • 4 point vertices describe a rectangle.

The indices must be transformed as follows

  • triangles  : 1st posn, 2nd posn, 0th posn.
  • quadrangles : 1st, 2nd, 3rd, 0th


Because of the variable amount of vertices in this struct (3 or 4), OffsetToSectionsStruct is used to skip the block. It's value is relative to the first PolygonVertice and is computed as follows
   OffsetToSectionsStruct= NoOfPolygons * (SizeofEach (PolygonVertice)); 

Each PolygonVertice is

nOfVertices *sizeof(ushort) + sizeof(ushort); // always 8 or 10

This, is in fact, an ERROR because the type size of the NoOfVertices is byte, NOT ushort. Hence the REAL offset is

RealOffsetToSectionsStruct = OffsetToSectionsStruct - NoOfPolygons *(sizeof(ushort)- sizeof(byte) );

or, to put it more simply

RealOffsetToSectionsStruct = OffsetToSectionsStruct - NoOfPolygons;

NOTE: See discussions for actual nature of this value

LodSection

LodSection
{
 ulong FaceLowerIndex;
 ulong FaceUpperIndex; //NoOfFaces = (FaceUpperIndex - FaceLowerIndex) / 8
 ulong Something1;
 ulong Something2;
 ulong UserValue;
 short TextureIndex;
 short Something4;
 byte  ZBias;
 byte  Something5;
 short MaterialIndex;
 if MaterialIndex ==-1
 {
   byte ExtraByte;
 }
 byte  Something6[2];
 ulong Something7;
 float Something8;
 float Something9;
}

LodNamedSelection

See P3D Named Selections

LodTokenPair

 LodTokenPair
 {
    asciiz Property;// "noshadow" = "1" eg
    asciiz Value;
 }

LodKeyFrame

LodKeyFrame
{
 float      FrameTime;
 ulong      NoOfFramePoints;
 XYZTriplet LodFramePoints[NoOfFramePoints];
 if V47 or V48
 {

float Arma2[4];

 }
}

LodUV

For V40 & V3

LodUV
{
 ulong                         nVertices;
 tbool                         DefaultFill;
 if (DefaultFill)
  float                        UV[2];              // default fill for all nVertices
 else
  float                        UV[nVertices][2];   // potentially compressed
}

The structure either contains a single UV pair of floats. Or, pairs of UV floats for all positions (nVertices)

If a full array is declared (DefaultFill != 0) then that array is compressed if 2 * sizeof(float) * nVertices > 1023

For V47 & 8

A2LodUV
{
 ulong                         nVertices;
 tbool                         DefaultFill;
 if (DefaultFill)
  float                        UV;              // default fill for all nVertices
 else
  float                        UV[nVertices];   // potentially compressed
}

As above, except only a single float value per vertex is used.


LodNormals

A2LodNormals
LodNormals
{
   tbool                         DefaultFill;
   if (DefaultFill)
    type XZY;
   else
    XYZTriplet                   XZY[nNormals];        // Potentially compressed
}

V40 and V43 type == XYZTriplet V47 and V48 type == float

LodUnknownStruct

LodUnknownStruct    // potentially compressed
{
   ulong  Index;
   float  Unknown[2];         // probably a vertices something
}

Decompression

see Compressed LZSS File Format

see Compressed LZO File Format


In ODOL v40 and v43 format files, some of the data structures present in the file are compressed by using LZSS compression. ODOL v47 and v48 use LZO compression.

Unlike pbo compression, in ArmA model files, one only knows the number of items to decompress, the expected output size (in bytes) and the expected checksum. With this information and the size of a given data item one has the necessary information to expand the data to it's original format and size.

Note:- Data structures that are identified as being compressible will only be compressed if the 'expectedSize' is >= 1024 bytes.

As an example if one was expanding the array of vertices positions...

  • A vertex is described by it's x,y,z coordinates which are floats. A float is a 32bit (4 byte) number.
  • If we were processing 1968 vertices then our expected output size would be 1968 * (3 * 4) = 23,616 bytes.

This 'expectedSize' is the only necessary information one would need to pass to a processing sub-routine or function.


Reference Tables

Material Stages

The number of material stages is dependant on the type of Shader that is used to process the material by the ArmA game engine. A reference table is used when processing materials where depending on the shader specified the given number of stages should be processed.

refShaderStages { int PixelShaderId; int NoOfStages; };

ID (Hex/Decimal) Name Description NoOfStages
0x00, 0 Normal diffuse color modulate, alpha replicate 0
0x01, 1 NormalDXTA diffuse color modulate, alpha replicate, DXT alpha correction 0
0x02, 2 NormalMap normal map shader 3
0x03, 3 NormalMapThrough normal map shader - through lighting 3
0x04, 4 NormalMapSpecularDIMap ? 2
0x05, 5 NormalMapDiffuse ? 2
0x06, 6 Detail ? 1
0x07, 7 ? ? ?
0x08, 8 Water sea water 2
0x09, 9 ? ? ?
0x0A, 10 White ? 0
0x0B, 11 ? ? ?
0x0C, 12 AlphaShadow shadow alpha write 0
0x0D, 13 AlphaNoShadow shadow alpha (no shadow) write 0
0x0E, 14 ? ? ?
0x0F, 15 DetailMacroAS ? 3
0x10, 16 ? ? ?
0x11, 17 ? ? ?
0x12, 18 NormalMapSpecularMap ? 2
0x13, 19 NormalMapDetailSpecularMap Similar to NormalMapDiffuse 3
0x14, 20 NormalMapMacroASSpecularMap ? 4
0x15, 21 NormalMapDetailMacroASSpecularMap ? 5
0x16, 22 NormalMapSpecularDIMap Same as NormalMapSpecularMap, but uses _SMDI texture 2
0x17, 23 NormalMapDetailSpecularDIMap ? 3
0x18, 24 NormalMapMacroASSpecularDIMap ? 4
0x19, 25 NormalMapDetailMacroASSpecularDIMap ? 5
0x38, 56 Glass ? 2
0x3A, 58 NormalMapSpecularThrough ? 3
0x3B, 59 Grass Special shader to allow volumetric shadows to be cast on grass clutter 0
0x3C, 60 NormalMapThroughSimple ? 0

Enums

int enum PixelShaderId { Normal = 0x00, NormalMap = 0x02, NormalMapDiffuse = 0x05, NormalMapMacroASSpecularMap = 0x14, NormalMapSpecularDIMap = 0x16, NormalMapMacroASSpecularDIMap = 0x18, AlphaShadow = 0x0C, AlphaNoShadow = 0x0D, Glass = 0x38, Detail = 0x06, NormalMapSpecularMap = 0x12 }

int enum VertexShaderId { Basic = 0x00, NormalMap = 0x01, NormalMapAS = 0x0F }


Links

Article Author - Sy (Synide) -- Sy 17:16, 11 August 2007 (CEST)

Original ODOLv40 Article detailed by Bxbx (Biki'd by Mikero)