vectorFromTo: Difference between revisions
Jump to navigation
Jump to search
Lou Montana (talk | contribs) |
Lou Montana (talk | contribs) m (Text replacement - "\|seealso= *\[\[([^ ]+)\]\], \[\[([^ ]+)\]\]" to "|seealso= $1 ") |
||
Line 21: | Line 21: | ||
[[vectorNormalized]] ([4,5,6] [[vectorDiff]] [1,2,3]);</code> | [[vectorNormalized]] ([4,5,6] [[vectorDiff]] [1,2,3]);</code> | ||
|seealso= [[vectorDiff]] [[vectorCrossProduct]] [[vectorDotProduct]] [[vectorCos]] [[vectorMagnitude]] [[vectorMagnitudeSqr]] [[vectorMultiply]] | |seealso= [[vectorDiff]] [[vectorCrossProduct]] [[vectorDotProduct]] [[vectorCos]] [[vectorMagnitude]] [[vectorMagnitudeSqr]] [[vectorMultiply]] [[vectorDistance]], [[vectorDistanceSqr]], [[vectorDir]], [[vectorUp]], [[setVectorDir]], [[setVectorUp]], [[setVectorDirAndUp]], [[vectorNormalized]], [[matrixMultiply]], [[matrixTranspose]] | ||
}} | }} | ||
Revision as of 21:56, 20 January 2022
Description
- Description:
- Unit vector, equal to direction from vector1 to vector2. In other words this command produces normalised vector between given 2 points.
To get a non-normalised vector, use vectorDiff. - Groups:
- Math - Vectors
Syntax
- Syntax:
- vector1 vectorFromTo vector2
- Parameters:
- vector1: Array - vector 3D or 2D (since 2.00, z coordinate is defaulted to 0)
- vector2: Array - vector 3D or 2D (since 2.00, z coordinate is defaulted to 0)
- Return Value:
- Array
Examples
- Example 1:
[1,2,3] vectorFromTo [4,5,6]; // is the same as vectorNormalized ([4,5,6] vectorDiff [1,2,3]);
Additional Information
- See also:
- vectorDiff vectorCrossProduct vectorDotProduct vectorCos vectorMagnitude vectorMagnitudeSqr vectorMultiply vectorDistancevectorDistanceSqrvectorDirvectorUpsetVectorDirsetVectorUpsetVectorDirAndUpvectorNormalizedmatrixMultiplymatrixTranspose
Notes
-
Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note
- Posted on 19 Jul, 2014
- ffur2007slx2_5
-
1.26 Algorithm:
Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2]; Result = [ (x1 – x2) / (sqrt ((x1 – x2) ^ 2 + (y1 – y2) ^ 2 + (z1 – z2) ^ 2)), (y1 – y2) / (sqrt ((x1 – x2) ^ 2 + (y1 – y2) ^ 2 + (z1 – z2) ^ 2)), (z1 – z2) / (sqrt ((x1 – x2) ^ 2 + (y1 – y2) ^ 2 + (z1 – z2) ^ 2)) ];