vectorCrossProduct: Difference between revisions

From Bohemia Interactive Community
Jump to navigation Jump to search
m (Text replacement - "|gr1= Vectors|GROUP1=" to "|gr2= Math - Vectors |GROUP2=")
m (Text replacement - "_{10,} " to "")
Line 1: Line 1:
{{Command|Comments=
{{Command|Comments=
____________________________________________________________________________________________


| arma3 |Game name=
| arma3 |Game name=
Line 7: Line 6:


|gr2= Math - Vectors |GROUP2=
|gr2= Math - Vectors |GROUP2=
____________________________________________________________________________________________


| Cross product of two 3D vectors.  
| Cross product of two 3D vectors.  
<br>In layman's terms, if you have a polygon (surface) defined by 3 points, you can find a normal to it (just like terrain [[surfaceNormal]]). To invert direction of the normal, swap arguments around. |DESCRIPTION=
<br>In layman's terms, if you have a polygon (surface) defined by 3 points, you can find a normal to it (just like terrain [[surfaceNormal]]). To invert direction of the normal, swap arguments around. |DESCRIPTION=
____________________________________________________________________________________________


| vector1 [[vectorCrossProduct]] vector2 |SYNTAX=
| vector1 [[vectorCrossProduct]] vector2 |SYNTAX=
Line 24: Line 21:




____________________________________________________________________________________________
   
   
|x1= <code>_vector = [1,1,1] [[vectorCrossProduct]] [2,2,2];</code> |EXAMPLE1=
|x1= <code>_vector = [1,1,1] [[vectorCrossProduct]] [2,2,2];</code> |EXAMPLE1=
Line 31: Line 27:


|x3= <code>_vectorSide = ([[vectorDir]] [[player]]) [[vectorCrossProduct]] ([[vectorUp]] [[player]]);</code> |EXAMPLE3=
|x3= <code>_vectorSide = ([[vectorDir]] [[player]]) [[vectorCrossProduct]] ([[vectorUp]] [[player]]);</code> |EXAMPLE3=
____________________________________________________________________________________________


| [[vectorAdd]], [[vectorDiff]], [[vectorDotProduct]], [[vectorCos]], [[vectorMagnitude]], [[vectorMagnitudeSqr]], [[vectorMultiply]], [[vectorDistance]], [[vectorDistanceSqr]], [[vectorDir]], [[vectorUp]], [[setVectorDir]], [[setVectorUp]], [[setVectorDirAndUp]], [[vectorNormalized]], [[vectorFromTo]], [[matrixMultiply]], [[matrixTranspose]]  |SEEALSO=
| [[vectorAdd]], [[vectorDiff]], [[vectorDotProduct]], [[vectorCos]], [[vectorMagnitude]], [[vectorMagnitudeSqr]], [[vectorMultiply]], [[vectorDistance]], [[vectorDistanceSqr]], [[vectorDir]], [[vectorUp]], [[setVectorDir]], [[setVectorUp]], [[setVectorDirAndUp]], [[vectorNormalized]], [[vectorFromTo]], [[matrixMultiply]], [[matrixTranspose]]  |SEEALSO=

Revision as of 04:23, 17 January 2021

Hover & click on the images for description

Description

Description:
Cross product of two 3D vectors.
In layman's terms, if you have a polygon (surface) defined by 3 points, you can find a normal to it (just like terrain surfaceNormal). To invert direction of the normal, swap arguments around.
Groups:
Math - Vectors

Syntax

Syntax:
vector1 vectorCrossProduct vector2
Parameters:
vector1: Array - in form [x, y, z] or 2D (since Arma 3 v1.99.146539, z coordinate is defaulted to 0)
vector2: Array - in form [x, y, z] or 2D (since Arma 3 v1.99.146539, z coordinate is defaulted to 0)
Return Value:
Array - vector [x, y, z]

crossProduct.jpg

Examples

Example 1:
_vector = [1,1,1] vectorCrossProduct [2,2,2];
Example 2:
_vectorUp = [0,1,0] vectorCrossProduct [-1,0,0]; //[0,-0,1]
Example 3:
_vectorSide = (vectorDir player) vectorCrossProduct (vectorUp player);

Additional Information

See also:
vectorAddvectorDiffvectorDotProductvectorCosvectorMagnitudevectorMagnitudeSqrvectorMultiplyvectorDistancevectorDistanceSqrvectorDirvectorUpsetVectorDirsetVectorUpsetVectorDirAndUpvectorNormalizedvectorFromTomatrixMultiplymatrixTranspose

Notes

Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note

Notes

Posted on 28 Jun, 2014
ffur2007slx2_5
(ArmA3 1.22)Algorithm: Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2]; Result = [(y1 * z2) – (z1 * y2),(z1 * x2) – (x1 * z2),(x1 * y2) – (y1 * x2)]; It is recommended to use vectorCrossProduct instead of BIS_fnc_crossProduct.

Bottom Section