vectorFromTo: Difference between revisions

From Bohemia Interactive Community
Jump to navigation Jump to search
m (Text replacement - " \| *(game[0-9]|version[0-9]|gr[0-9]|serverExec|mp|pr|descr|s[0-9]|p[0-9]{1,3}|r[0-9]|x1?[0-9]|seealso) *= +" to " |$1= ")
m (Text replacement - " |r1=[[" to " |r1= [[")
Line 14: Line 14:
|p2= vector2: [[Array]] - vector 3D or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)
|p2= vector2: [[Array]] - vector 3D or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)


|r1=[[Array]]
|r1= [[Array]]


|x1= <code>[1,2,3] [[vectorFromTo]] [4,5,6]; //[0.57735,0.57735,0.57735]
|x1= <code>[1,2,3] [[vectorFromTo]] [4,5,6]; //[0.57735,0.57735,0.57735]

Revision as of 23:50, 7 August 2021

Hover & click on the images for description

Description

Description:
Unit vector, equal to direction from vector1 to vector2. In other words this command produces normalised vector between given 2 points. To get a normal vector use vectorDiff.
Groups:
Math - Vectors

Syntax

Syntax:
vector1 vectorFromTo vector2
Parameters:
vector1: Array - vector 3D or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)
vector2: Array - vector 3D or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)
Return Value:
Array

Examples

Example 1:
[1,2,3] vectorFromTo [4,5,6]; //[0.57735,0.57735,0.57735] //is the same as vectorNormalized ([4,5,6] vectorDiff [1,2,3]); //[0.57735,0.57735,0.57735]

Additional Information

See also:
vectorDiffvectorCrossProductvectorDotProductvectorCosvectorMagnitudevectorMagnitudeSqrvectorMultiplyvectorDistancevectorDistanceSqrvectorDirvectorUpsetVectorDirsetVectorUpsetVectorDirAndUpvectorNormalizedmatrixMultiplymatrixTranspose

Notes

Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note
Posted on 19 Jul, 2014
ffur2007slx2_5
Arma 3 logo black.png1.26 Algorithm: Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2]; Result = [(x1 – x2)/(sqrt ((x1 – x2) ^ 2 + (y1 – y2) ^ 2 + (z1 – z2) ^ 2)), (y1 – y2)/(sqrt ((x1 – x2) ^ 2 + (y1 – y2) ^ 2 + (z1 – z2) ^ 2)), (z1 – z2)/(sqrt ((x1 – x2) ^ 2 + (y1 – y2) ^ 2 + (z1 – z2) ^ 2))];