vectorDistanceSqr: Difference between revisions
Jump to navigation
Jump to search
Lou Montana (talk | contribs) |
Lou Montana (talk | contribs) m (Text replacement - "\|seealso= *\[\[([^ ]+)\]\], \[\[([^ ]+)\]\]" to "|seealso= $1 ") |
||
Line 18: | Line 18: | ||
|x1= <code>_distSqr = [[getPos]] [[player]] [[vectorDistanceSqr]] [0,0,2];</code> | |x1= <code>_distSqr = [[getPos]] [[player]] [[vectorDistanceSqr]] [0,0,2];</code> | ||
|seealso= [[vectorAdd]] [[vectorDiff]] [[vectorCrossProduct]] [[vectorDotProduct]] [[vectorCos]] [[vectorMagnitude]] [[vectorMagnitudeSqr]] [[vectorMultiply]] [[vectorDistance]] [[vectorDir]] [[vectorUp]] [[setVectorDir]] [[setVectorUp]] [[setVectorDirAndUp]] [[distanceSqr]] | |seealso= [[vectorAdd]] [[vectorDiff]] [[vectorCrossProduct]] [[vectorDotProduct]] [[vectorCos]] [[vectorMagnitude]] [[vectorMagnitudeSqr]] [[vectorMultiply]] [[vectorDistance]] [[vectorDir]] [[vectorUp]] [[setVectorDir]] [[setVectorUp]] [[setVectorDirAndUp]] [[distanceSqr]] [[vectorNormalized]], [[vectorFromTo]] | ||
}} | }} | ||
Revision as of 22:21, 20 January 2022
Description
- Description:
- Squared distance between two 3D vectors.
- Groups:
- Math - Vectors
Syntax
- Syntax:
- vector1 vectorDistanceSqr vector2
- Parameters:
- vector1: Array - vector 3D or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)
- vector2: Array - vector 3D or 2D (since Arma 3 v2.00, z coordinate is defaulted to 0)
- Return Value:
- Number
Examples
- Example 1:
_distSqr = getPos player vectorDistanceSqr [0,0,2];
Additional Information
- See also:
- vectorAdd vectorDiff vectorCrossProduct vectorDotProduct vectorCos vectorMagnitude vectorMagnitudeSqr vectorMultiply vectorDistance vectorDir vectorUp setVectorDir setVectorUp setVectorDirAndUp distanceSqr vectorNormalizedvectorFromTo
Notes
-
Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note
- Posted on 28 Jun, 2014
- ffur2007slx2_5
-
1.22 Algorithm:
Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2]; Result = (x2 - x1) ^ 2 + (y2 - y1) ^ 2 + (z2 - z1) ^ 2;