vectorCos: Difference between revisions

From Bohemia Interactive Community
Jump to navigation Jump to search
(syntax change)
(Algorithm & note)
Line 30: Line 30:
<dl class="command_description">
<dl class="command_description">
<!-- Note Section BEGIN -->
<!-- Note Section BEGIN -->
 
<dd class="notedate">Posted on 28 Jun, 2014
<dt class="note">'''[[User:ffur2007slx2_5| ffur2007slx2_5]]'''<dd class="note">
(ArmA3 1.22)Algorithm:
<code>
Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2];
Result = ((x1 * x2) + (y1 * y2) + (z1 * z2))/(([[sqrt]] (x1 ^ 2 + y1 ^ 2 + z1 ^ 2))*([[sqrt]] (x2 ^ 2 + y2 ^ 2 + z2 ^ 2)))
</code>
Given two vectors of attributes, A and B, the cosine similarity, cos(θ), is represented using a dot product and magnitude. The resulting similarity values indicating intermediate similarity or dissimilarity between two vectors.
<!-- Note Section END -->
<!-- Note Section END -->
</dl>
</dl>

Revision as of 09:09, 28 June 2014

Hover & click on the images for description

Description

Description:
Cosine of angle between two 3D vectors.
Groups:
Uncategorised

Syntax

Syntax:
vector1 vectorCos vector2
Parameters:
vector1: Array
vector2: Array
Return Value:
Number

Examples

Example 1:
_cos = getPos player vectorCos [0,0,2];

Additional Information

See also:
vectorAddvectorDiffvectorCrossProductvectorDotProductvectorMagnitudevectorMagnitudeSqrvectorMultiplyvectorDistancevectorDistanceSqrvectorDirvectorUpsetVectorDirsetVectorUpsetVectorDirAndUp

Notes

Report bugs on the Feedback Tracker and/or discuss them on the Arma Discord or on the Forums.
Only post proven facts here! Add Note

Notes

Posted on 28 Jun, 2014
ffur2007slx2_5
(ArmA3 1.22)Algorithm: Vector1 = [x1,y1,z1]; Vector2 = [x2,y2,z2]; Result = ((x1 * x2) + (y1 * y2) + (z1 * z2))/((sqrt (x1 ^ 2 + y1 ^ 2 + z1 ^ 2))*(sqrt (x2 ^ 2 + y2 ^ 2 + z2 ^ 2))) Given two vectors of attributes, A and B, the cosine similarity, cos(θ), is represented using a dot product and magnitude. The resulting similarity values indicating intermediate similarity or dissimilarity between two vectors.

Bottom Section